
A Fifth Tutorial

The Software Construction Company, Inc

September 19, 1989

1 The Fifth Environment

Fifth is a browser-based system in the tradition of workstation-class
Smalltalk and Lisp environments. This differentiates Fifth from more fa-
miliar integrated systems such as the Borland and JPI environments, where
the primary operating mode is the text editor. Fifth is also a highly in-
teractive language, providing a command line interface that allows you to
quickly test and debug your code.

1.1 The Fifth Browser

The browser adds an extra dimension to program editing. Rather than
a flat file of text, the browser manipulates code at the functional level, al-
lowing functions to be visually moved, grouped, and scoped. It supports
programming in the large, providing the higher-level development facilities
such as turnkey generation and an automatic "make." Here are the com-
mands available from the browser:

<ESC> - Exits the Browser.

<*—> - Move left one child.

<—>> - Move right one child.

<t> - Move up one level.

<|> - Move down one level.

<Ctrl <— > - Move the currently selected child left.

<Ctrl —>> - Move the currently selected child right.

<Ctrl-PgUp> - Move the currently selected child up one level.

1

<Ctrl-PgDn> - Move the currently selected child down one level.

<A> - Make a TURNKEY application.

<C> - Compile the local module.

<E> - Edit the local module.

<D> - Delete the selected module.

<G> - (Go) Execute the local module.

</> - Insert a new module in front of the selected module. Prompts for
the module name.

<L> - Load a file previously saved using <S>.

<Q> - Quit to MS-DOS.

<R> - Renames the local module. Prompts for the new name.

<5> - Saves the local module and all of its children to disk. Prompts for
a file name to save the module in.

1.2 The Fifth Text Editor

The editor plays a somewhat subordinate role in the Fifth system be-
cause the browser is used to edit at the module level. Fifth encourages very
modular programming; thus, the text editor is very simple, and is designed
for editing small amounts of text. As a rule of thumb, if the editor becomes
cumbersome, your modules are probably too large, and should be factored
into several smaller modules. The following is a list of commands available
in the editor:

<Home> - Move to the start of the current line.

<End> - Move to the end of the current line.

<PgUp> - Move up 23 lines.

<PgDn> - Move down 23 lines.

</ns> — Toggle between insert and overstrike modes.

 ~ Delete the character under the cursor.

<Ctrl-PgUp> - Drag the current line up one line.

< Ctrl-PgDn> - Drag the current line down one line.

<ESC> - Exits the Editor, returns to the previous environment.

< TAB> - Skip forwards to next tab stop.

<Shift-TAB> - Skip backwards to previous tab stop.

<Ctrl-C> - Abort the edit session, changes are lost.

<Ctrl-E> - Scroll up 1 line.

<Ctrl-G> - Delete the character under the cursor.

<Ctrl-N> - Split the line at the cursor position.

<Ctrl- W> - Toggle word wrap mode.

<Ctrl-X> - Scroll down 1 line.

<Ctrl-Y> - Delete the current line.

<F1> - Call up help on the editor.

<F2> - Call up help on the module under the cursor.

<F3> - Insert blank line into text.

<F7> - Delete the current line.

<F8> - Undelete the line last deleted.

<F9> - Split the current line at the cursor position.

<F10> - Join the current line with the next line.

<Backspace> - Delete the character to the left of the cursor.

<Return> - Move to the start of the next line.

1.3 The Fifth Command Line Interface

The browser and editor are only half of the story, however. Much of
Fifth's power comes from its interactive mode. In the interactive mode,
you can enter just about any legal Fifth expression and have it evaluated
instantly, making testing and debugging painless.

1.4 Debugging

Debugging in Fifth is both simple and efficient. Fifth provides a prim-
itive module, trace , that when executed prints the name of the module
you are about to execute and the stacks, and pauses until a key is pressed.
For more dirty debugging jobs, there is a command available in the Browser
that will toggle single-step mode on a given module. A module in single-
step mode will do a trace between every module it calls as it executes.
This mode is very useful for finding stack errors in your code. As an added
feature, any time Fifth is waiting for a key in trace , you can press the
<Return> key to shell to the command line. Here you have the full power
of Fifth to help you explore your program.

1.5 The Help System

As an aid to those of us without eidetic memory, there is a context-
sensitive help system available in all of Fifth's operating modes. Since the
help system covers Fifth in nearly as much detail as the manual, it is usually
all the documentation that an experienced Fifth programmer needs. For
example, in the editor you can place the cursor on the name of any module
and press the <F2> key for help. If the module is not a primitive, then you
are taken to its source code instead. Either way, you get information on
what the module does. This system drastically reduces the amount of time
wasted in nipping through the manuals for documentation on some obscure
command.

1.6 The Fifth Compiler

The Fifth language is a 32-bit descendant of Forth-83. Its extensions
include automatic incremental compilation, built in 80x87 coprocessor sup-
port, DOS support, and a handle-based memory management system. Fifth
compiles to optimized 8086 code for fast execution, and the professional ver-
sion of Fifth is also capable of producing conventional DOS .EXE turnkeys.

1.7 The Fifth Data Stack

The data stack is Fifth's central data structure. It is used for evalu-
ating expressions, passing parameters, and temporary data storage. It is
impossible to program in Fifth without a solid understanding of its data
stack.

The classic model for a stack is a rack of cafeteria trays in a spring-loaded
holder. As trays are placed on top of the rack, the other trays are pushed
down. Since trays can only be removed from the top of the holder, the first
trays placed on the stack will be the last trays removed (often referred to
as LIFO, meaning Last-in, First-Out).

This stack-based system is not as unusual as it may seem. Most pro-
gramming languages, including C and Pascal use a stack to evaluate their
expressions. This translation from an infix expression system to a postfix,
stack-oriented system is done by the C or Pascal compiler. Fifth, however,
lets the programmer work directly with the stack. This allows the program-
mer to write operators that take more than two operands (impossible in C
or Pascal), and functions that return more than one result. This leads to
a style of programming called functional programming, where a function is
more for the transformations it makes on the stack than for any side effects.

Despite postfix's simplicity and power, the fact remains that most of
the world uses the algebraic form for expressions. It is occasionally neces-
sary, therefore, to convert an infix expression to its equivalent postfix form.
Fortunately, this is a straightforward mechanical procedure which is quite
easily mastered, as many Hewlett-Packard calculator users can attest. The
procedure for converting an infix expression to postfix goes as follows:

1. Scan the infix expression from right to left, moving operators behind
their operands (an expression enclosed in parentheses is really a single
operand).

2. Within each pair of parentheses, do step (1) and remove the parenthe-
ses.

3. Be careful of the precedence of such operators as multiplication (*),
division (/), and exponentiation (").

The best way to learn this procedure is to just jump in and actually try
it. Here is a simple example.

(5 + 95) / 10

The topmost operator is the division (/) operator. It's two arguments
are '(5 + 95)' and '10'. So the first transformation is to move the '10' in
front of the '/' operator, like this:

(5 + 95) 10 /

Now it is necessary to process the parenthesized expression '(5 + 95)'.
It is transformed in the same way as the outer expression, but this time
there are only simple (non-parenthesized) operands. The final result is the
postfix expression

5 95 + 10 /

Now you are ready for a more complicated example. Here is the trans-
formation of the expression '(15 - 10) * (3 + 1) / 4'.

(15 - 10) * (3 + 1) / 4
(15 - 10) (3 + 1) * 4 /
15 1 0 - 3 1 + * 4 /

Notice that the order of the operands is the same in both the infix and post-
fix forms of the expression. The only difference between the two types of
expressions is that the operators have been moved around and all parenthe-
ses have been removed. This makes it easy (with a little practice) to convert
an infix expression to its postfix equivalent in a single pass. Here are some
more infix expressions to help you gain experience in converting to postfix:

1. ((1 + 5) - (3 - 2)) * 5

2. (1 + 2 + 3 + 4 + 5) / 15

3. 15 / (1 + 2 + 3 + 4 + 5)

4. ((((5 * 4) / 3) * 2) / 1)

5. 1 + 2 * 3 - 4 / 5 * ((6 - 7))

6. ((1 - 2) * ((3 - 4) + (5 + 6)) / (7 / 9))

7. (1 + (2 - (3 + (4 -• (5 + 6)))))

Try to work the problems before looking at the answers below.

1 . 1 5 + 3 2 - - 5 *

2. 12 + 3 + 4 + 5+ 15 /

3. 15 12 + 3 + 4 + 5+ /

4 . 5 4 * 3 / 2 * l /

5. 1 2 3 * + 4 5 / - 6 7 - *

6 . 1 2 - 3 4 - 5 6 + +

7 . 1 2 3 4 5 6 + - + -

7 9 / /

2 The Fifth Tree

Fifth source code is maintained by the browser in a highly structured
tree—like hierarchv. In this scheme, Fifth is at the top of the tree (the
"root") and all 01 the primitives and user-written modules are children of
Fifth.

2.1 Scoping

The Fifth compiler uses this tree structure to provide scoping to a pro-
gram. When Fifth searches for a name, it starts at the children of the
current module in the tree and searches backwards through the names on
the current level. When it reaches the beginning of the list, it goes up to
the previous level, and begins searching back from there. Figure 1 shows
how such a search would proceed.

...--••FIFTH

ABORT-*

P*-"--G-

Figure 1: Example search

Packages

A pure tree-structured approach has several problems, as evidenced by
languages like Pascal, since it makes no provision for libraries of frequently
used routines. To break the standard scoping rules when they prove too
restrictive, Fifth provides packages. This is a collection of modules hidden in
a special module that allows them to be found by Fifth during a name look-
up. Fifth uses packages to hide libraries of related functions like graphics
or floating point operations.

A Session With Fifth

So far, we have only talked about Fifth. Now it is time to actually get in
and do something with it. Over the next few pages we will develop a small
program, DUMP, that will dump a binary file to the screen in a comprehensible
format.

3.1 Introduction to DUMP

However, first we will jump ahead a bit and give present a hierarchy
chart (figure 2) for the final program.

dump
infile
open-input-file
dump-file

bufsize
input-buffer
line-address
dump-buffer

print-line

print-addr

print-hex-field
print-char-field

Figure 2: Functional hierarchy of DUMP

This functional hierarchy corresponds nicely to its Fifth tree represen-
tation, as shown in figure 3:

dunvD

infile open-input-file dump-file

bufsize input-buffer line-address dump-buffer

print-line print-addr

print-hex-field print-char-field

Figure 3: Fifth tree structure for DUMP

3.2 Developing the Code

We will be developing DUMP in a top-down manner, as befitting a struc-
tured language like Fifth. At the highest level, all DUMP needs to do is open
the file, print a dump somehow, and close the file. Since both opening and
dumping the file are likely to be several lines of code, we will push them off
into their own modules. Closing the file is very simple, so we will just code
that in line.

\s is a small program that reads a filename from the

\d line and dumps that file to stdout in a nice,
\e format.

\: DUMP filename
: dump (--)

open-input-file
dump-file
infile <0 close

\s the handle for our input file
variable infile

But before you go and type this code in, we should probably cover some
of the errors that beginning Fifth programmers commonly make. First of
all, most of the white space in this program is significant. Fifth uses white

arespace to delimit words in the code. This means that both | : | and dump

words Fifth can recognize, but :dump is not. When Fifth finds a word
that it cannot recognize, it pops up an error box containing the offending
word and a short descriptive error message.

Since we are developing DUMP top-down, when you leave the editor
you will get an error message informing you that Fifth could not find
open-input-file . Don't worry, just press <Return> to get back to the

Browser. We will be adding this and other modules later in this section, as
we work through the details of DUMP.

Another common error is forgetting the semicolon at the end of | : | de-
fined modules. Since many Fifth primitives are mere punctuation marks,
it is easy for your eye to simply skip over them as you read.

Notice that, although the | inf ile variable is declared in the same listing

as the code for dump , it must be placed in a module of its own. After typing

and

dump , i

inlile , the screen should look something like

[DUMP] Fl - Help, Trace is OFF, Memory: 411792

INFILE

\s is a small program that reads a filename from the
\d line and dumps that file to stdout in a nice,
\e format.
\: DUMP filename
: dump (--)
open-input-file
dump-file
infile 0 close

\s the handle for our input f i le
variable infile

Having written this, our next step is to flesh out the details of
open-input-iile . This module takes advantage of a few useful features

of Fifth. When a Fifth turnkey program starts running, Fifth loads the
1pad buffer with the text of the command trailer. By happy coincidence,

Fifth also initializes the input pointer to the start of the pad buffer. This

10

means that we can use word to parse out the filename. But Fifth also

uses the pad buffer for parsing keyboard input in interactive mode. This
means that you can run DUMP by typing

DUMP filename

at either the DOS prompt or in Fifth interactive mode. This makes it very
easy to test DUMP during development.

\n the f i le , place the handle in INFILE for use by
\e rest of the program.
: open-input-file (--)

32 word dup cS if \e out the filename
1+ \p over the count byte
0 open 0= \n the file
abort" File not found" \t it error
infile ! \e away our handle

else \e user didn't give us a file name
." Usage: DUMP fi lename" cr cr
." Dumps a binary file in a readable fo rma t . "
cr
abort

endif

also' has a few quirks, since it must correctly handle

ad module. Notice howbuffering and any conditions caused by the

input-buffer is created. This is the usual way of creating a Fifth array.
Since we will use the buffer size in several places in the code, we should put
it into a named constant. One thing to be aware of is that Fifth, unlike
Forth, does not compile a call to a named constant whenever it is encoun-
tered. One ramification of this is that modules using the constant must be
forcibly recompiled whenever the module changes (simply recompiling its
parent usually suffices).

11

\s the actual dumping of the fi le.
: dump-file (--)

0 line-address ! hex
begin

input-buffer BUFSIZE infile <9 read
0= ii ." DOS error #" . abort endif

dup while \p when we read 0 bytes
input-buffer dump-buffer

repeat \p processing the file

1024 constant BUFSIZE \e of disk buffer

create input-buffer BUFSIZE allot \e the buffer

variable line-address \s the line counter

Dump-buffer 's responsibility is to run through the input buffer, dump-
ing ouTT6~Bytes~to a line. It must also maintain the file index independently
of the current buffer and line.

\s a buffer to the screen.
: dump-buffer (bytes addr --)

begin
over 0 > \p when the buffer is exhausted

while
line-address <5 print-addr

\p address & count
\p file offset

stack abIbaba
16 min print-line
16 - swap 16 +
16 line-address +!

repeat
drop drop

\p processing the buffer

Again, any details that would tend to complicate matters have been
buries the

details of actually printing the file index and the output line in the modules
pushed down into a lower module. If you noticed, dump-buffer

12

The same is true in print-line whichprint-addr and print-line
buries the details of printing the hex dump and the character dump in the

This makes it easyprint-char-fieldprint-hex-field
to change their behavior without affecting the rest of the program. In order

print-line as generic as possible, it takes an address to start reading
from, and the number of bytes to dump. This makes it easy to incorporate

print-line into, say, a memory dump routine for use in debugging Fifth
programs.

\n an address and the number of bytes to dump
\t out a nice dump line. It assumes that the offset

\f the line w/in the buffer has already been printed.
: print-line (addr count --)
?dup 0= if \o count, just exit cleanly

drop exit
endif
dup 16 > abort" DUMP COUNT OUT OF RANGE"
stack abIabab \p a copy of of our parms
print-hex-field
print-char-field

Print-hex-field and print-char-field are quite similar to each
other. Indeed, their primary difference is in the way they output each mem-
ory byte. Their sole complication is that they will pad out to the full 16-byte
field if they are asked to dump less than 16 bytes of data.

Because these modules are so similar, it would seem to be a good practice
to factor out their common functionality into one module. However, these
are very small modules, and their differences are scattered about in their
code. It turns out that after factoring out common code fragments, the code
size does not change appreciably, while the resulting code is significantly

less readable. Print-hex-field and print-char-field , while large by
Forth standards, are still small enough to be read and comprehended at a
glance.

13

\t 16 bytes as hex

: print-hex-field (addr count --)
dup >r \p a copy of our count
0 do

count \t our byte, increment ptr
< # # # # > type space \t its hex value

loop drop
16 r> - dup 0 > if \d our field to full width

0 do

loop
else
drop

endif
\t clean up the stack

\t 16 bytes as characters.
\t nonprintables to
: print-char-field (addr count --)

dup >r \p a copy of our count
." I" \t our header
0 do

count \t our char, increment ptr

dup 32 < over 127 > or if \x nonprinting chars
drop ' .

endif

emit

loop drop
16 r> - dup 0 > if

0 do

space
loop

\t our char out

\l up the rest of the line?

else
drop

endif
' I emit cr

\t clean up the stack

The last routine in our little dump program is a module to print out the

14

file index. Although | . | is normally just fine for printing out numbers, in
this case we need to print out the number in a full eight-character field with
leading zero's. This requires use of Fifth's numeric formatting features.
In Fifth, as in Forth, these are <# , which marks the start of a numeric
formatting sequence, |_#J, which formats a single digit from the number,

, which inserts a literal character into the formatted output, and
which marks the end of the formatting sequence. In print-addr , we will

use only |# | , and Within the pair, we simply loop
eight times, formatting a new digit each time. The result is a pointer to the
formatted string, and the length of the string, exactly what is required by

. The string is printed out, and we are done.

\s and prints a 32 bit number
: print-addr (n --)

<# 8 0 do # loop #> type

3.3 Finale

And there you have it: a real Fifth application ready to go. Program-
ming in Fifth goes much faster than would seem from this example. It took
much longer to write about DUMP than to write the actual Fifth code.

If you have the professional version of Fifth, you can make it into a
ready-to-run .EXE by making dump the context module, and pressing
<A> to invoke the turnkey application generator. This will produce a file
named DUMP.EXE on the disk. Good luck, and happy Fifth'ing!.

15

4 Glossary

The following is a brief description of the Fifth primitives used in this
tutorial.

/ (n addr -) Pronounced "Store," this is the counterpart to | <B . It
stores the second item on the stack into the address specified by the
number on top of the stack.

(n - n') Pronounced "Sharp," this module is the workhorse of the
Fifth numeric formatting system. It takes a number on top of the
stack and strips out the low order digit, then converts that digit to
ASCII and places it into the formatted output string.

#> (n - count addr) Tosses the number on top of the stack (presumably
the one being formatted), and returns the length and aadress of the
formatted string.

+ (nl n2 - nl+n2) Takes two 32-bit numbers from the top of the stack,
adds them, and pushes the result back onto the stack.

+ ! (n addr -) Roughly equivalent to C"s "+=" and "-=" operators. It
increments the value at addr by n.

- (nl n2 - nl-n2) Takes two 32-bit numbers from the top of the stack,
subtracts them, pushes the result back onto the stack.

. " . . . " (-} Pronounced "dot-quote." At compile-time, this module parses
out text following it up to the terminating quote. A space is required
immediately following the initial _.J_|_ , but it is not part of the string.
At run-time, the parsed string is printed to the standard output
device.

0= (n - flag) Tests the number on the top of the stack against zero. If
the number equals zero, a true flag (-1) is left, otherwise a false flag
(0) is left on the stack.

1+ (n - n+1) Increments the number on the stack by one. This module
is exactly equivalent to 1 + , but is faster to type, and compiles to
slightly more efficient code on some hardware platforms.

: (-) This module is used to create executable modules. At compile-
time it parses out the name of the module, and turns on the compiler.

16

; (-) This module turns off the compiler. | : | and|jj are used together
to build an executable module.

< (nl n2 - flag) Compares the top two elements on the stack and
returns true (-1) if the second element is arithmetically less than the
top element, otherwise it returns false (0).

^ (n -) Sets up a numeric formatting buffer for use by |_#J, hold ,

and #> .

> (nl n2 - flag) Compares the top two elements on the stack and
return true (-1) if the second element is arithmetically less than the
topo element, otherwise it returns false (0).

>r (n -) Pronounced "to-r." Takes the top element on the data stack
and pushes it onto the return stack. This is a dangerous move since
Fifth keeps subroutine return addresses here. However, with disci-

can greatly simplify code without havingplined use, and
to resort to variables.

?dup (n - n n) or (n - n) Pronounced "query-dup," this module has a very
specialized purpose in Fifth. A fairly common action is to compare
a number against zero, and then perform some action if the number
is not zero. ?dup helps to simplify the code in such a situation. If

the number on top of the stack is not zero, ?dup acts just like dup

However, if the number is zero, then ?dup does nothing.

@ (addr - n) Pronounced "fetch." | <5 | pops the address off the top of
the stack, and fetches the thirty-two-bit number at that address to
the top of the stack.

(-) Treats the text up to the end of the current line as a comment.

(- n) At compile-time, | ' | reads the next character in the input
stream stream and at run-time pushes that character's ASCII value
to the stack.

abort (--) Stops Fifth's execution. It resets all stacks and the video
mode. The compiler is turned off and the radix is set to decimal. It
redirects standard input and standard output to the CON: device.

17

All other files are closed. All partially compiled modules are marked
as uncompiled. All modules allocated with new are returned to free
memory. The heap is compacted. The math coprocessor is reset. In
a turnkey, the program is unloaded and control returned to DOS via
the standard exit mechanism.

abort (flag -) Pronounced "abort-quote." This module tests the flag at
the top of the stack. If the flag is non-zero, the following message is
printed and is called. Otherwise the message is skipped and
execution proceeds normally.

allot (n -) Takes a number off the top of the stack, and allocates that
many bytes to the module currently being compiled.

begin (-) Marks the start of an indefinite loop. Either a while or an
until ends the loop.

c@ (addr - 8b) Pronounced "see-fetch." c<5 pops the address off the
top of the stack, and fetches the eight-bit number at that address to
the top of the stack. The number is not sign-extended.

close (n - -1) or (n - n' 0) This module closes a MS-DOS file handle. If an
error occurred, it returns the error code and a false flag, otherwise it
just returns a true flag.

constant At compile-time: (n -); At run-time: (- n). At compile time,
constant pops a number off the top of the stack, and creates a

named constant with that value. At run time, that named constant
pushes its value to the data stack.

count (addr - addr+1 8b) Roughly equivalent to "*ptr++" in C. It takes
the address at top of the stack, fetches the byte at that address,
and increments the address. This module is useful for retrieving the
count byte from a string (hence the name), and for looping through
an array of characters.

cr (-) Sends a CR/LF to the standard output device.

create (-) Used to create a new module in Fifth. It parses the following
word from the input stream to name the module. It also makes the
newly created module the local module. Executing the new module

18

will leave the address of its parameter area on the stack, create is
usually used along with to create named arrays.

do (limit start -) Provides a fast iterative loop. Do expects the loop
start value and ending value on the data stack. The loop will iterate
from start to limit-1.

drop (n -) Tosses the top value from the stack.

dup (n - n n) Pushes a copy of the top stack value.

else (-) Separates the two parts of an struc-
ture.

emit (8b —) Prints the character whose ASCII value is on the top of the
stack.

endif (-) Terminates an structure.

exit (-) Causes an immediate return from from the current module. This
is used by | ; [to generate a subroutine return.

hex (-) Changes the current numeric conversion radix to base-16.

hold (8b -) Inserts the ASCII value on top of the stack into the number
output conversion string. This is useful for adding things like decimal
points, dollar signs, etc to the numeric conversion string.

if (flag -) Tests the flag on top of the stack. If the value is non-zero,
it executes the code immediately following the if . If the value is
zero, it executes the code following the optional or the required

loop (-) Terminates a loop loop. It increments the loop index
and compares it to the terminating value. If the loop is not finished,
it branches up to the enclosing do statement. If the loop is finished,
it removes the index and limit from the return stack and execution
proceeds normally.

min (nl n2 - n) Returns the smaller of the top two numbers on the stack.

19

open (addr code - n -1) or (addr code - n 0). Treats the second number
on the stack as a pointer to a null-ended string (no leading count
byte). It treats the top number as a set of access flags (read-only,
read/write, etc) and attempts to open an existing file. If it succeeds,
it return the handle and a true flag. If the open fails, it returns the
error code and a false flag.

over (nl n2 - nl n2 nl) Makes a copy of the second stack element to the
top of the stack.

r> (- n) Pronounced "r-from." Pops the top element from the return
stack and pushes it to the data stack.

read (addr count handle - n -1) or (addr count handle - code 0) Attempts
to read count bytes from handle into buffer. If it succeeded, it returns
the number of bytes actually read and a true flag. If there was an
error, it returns the error code and a false flag.

repeat (-) This module terminates a loop.

space (-) Outputs a space to the standard output device.

stack stack is a generalized stack manipulation module. It treats the text
following it as a before . . . after picture of the stack, and generates
the code to make the transformation. For example, stack abc Icba
reverses the top three elements on the stack.

swap (nl n2 - n2 nl) Reverses the top two stack elements.

trace (-) Acts as a breakpoint in a code module.

type (addr count -) Prints the count bytes at addr to the standard output
device.

variable At compile-time: (-), at run-time: (- addr) Used to create a
named variable. At run-time, execution of that name pushes the
address of that variable's data area.

while (flag -) Used to detect the termination of loops. If the flag
on the top of the stack is true, control remains inside the loop. If the
flag is false, control transfers to the point following the repeat

20

word (char - addr) | Word | parses the input stream on whitespace and char
to find the next token. It leaves the address of the length byte. The
delimiter is not part of the parsed token.

21

